LEGGE DI OHM GENERALIZZATA:

ESERCIZIO OHM1:

Si consideri il circuito di figura.
Si determinino:

1. La corrente (intensità e verso).
2. La tensione tra He K.

ESERCIZIO OHM2:

Dato il circuito di figura calcolare la corrente I, la potenza dissipata dal resistore R e le potenze fornite dai singoli generatori.

Siano dati:
$\mathrm{Va}=10 \mathrm{~V}$
$\mathrm{Vb}=12 \mathrm{~V}$

$\mathrm{Vc}=-8 \mathrm{~V}$
$R=3 \Omega$

SERIE E PARALLELO:

ESERCIZIO SP1:

Si consideri il circuito di figura.
Si determinino:

1. La resistenza equivalente tra A e B.
2. La tensione su R4 se la tensione su R2 è pari a 60 V .

ESERCIZIO SP2:

Si consideri il circuito di figura.
Si determinino:

1. La corrente che circola su R1.
2. Le due correnti che circolano su R2 e R3.
3. La potenza erogata dal generatore
4. La potenza dissipata su R1

5. La potenza dissipata su R4

SOVRAPPOSIZIONE DEGLI EFFETTI:

ESERCIZIO SE1:
Si consideri il circuito di figura dove:
$\mathrm{E} 1=150 \mathrm{~V}$
$\mathrm{E} 2=100 \mathrm{~V}$
$R 1=60 \Omega$
$R 2=10 \Omega$
$R 3=30 \Omega$
$R 4=20 \Omega$
1- Tramite la sovrapposizione degli effetti determinare il valore delle

R4 correnti nei tre rami.

2- Determinare la potenza erogata da E1.
3- Determinare la potenza dissipata da R1.

Teorema di Thévenin:

ESERCIZIO TH1:
Nel circuito di figura a:
E1=48 V
E2=20 V
$\mathrm{R} 1=220 \Omega$
$R 2=330 \Omega$
$R 3=100 \Omega$

1- Tramite il teorema di Thévenin si determini il generatore equivalente (cioè si determinino Eeq e Req) nel circuito b.
2- Determinare la corrente 12 che scorre su R2.

